Irregularity of the Bergman Projection on Worm Domains in C
نویسندگان
چکیده
We construct higher-dimensional versions of the Diederich-Fornæss worm domains and show that the Bergman projection operators for these domains are not bounded on high-order Lp-Sobolev spaces for 1 ≤ p < ∞.
منابع مشابه
IRREGULARITY OF THE BERGMAN PROJECTION ON WORM DOMAINS IN C n
We construct higher-dimensional versions of the Diederich-Fornæss worm domains and show that the Bergman projection operators for these domains are not bounded on high-order Lp-Sobolev spaces for 1 ≤ p < ∞.
متن کامل$L^p$ boundedness of the Bergman projection on some generalized Hartogs triangles
In this paper we investigate a two classes of domains in $mathbb{C}^n$ generalizing the Hartogs triangle. We prove optimal estimates for the mapping properties of the Bergman projection on these domains.
متن کاملThe Bergman Kernel and Projection on Non-smooth Worm Domains
We study the Bergman kernel and projection on the worm domains Dβ = { ζ ∈ C : Re ( ζ1e −i log |ζ2| 2) > 0, ∣∣ log |ζ2| ∣∣ < β − π 2 } and D β = { z ∈ C : ∣Im z1 − log |z2| ∣∣ < π 2 , | log |z2| | < β − π 2 } for β > π. These two domains are biholomorphically equivalent via the mapping D β ∋ (z1, z2) 7→ (e z1 , z2) ∋ Dβ . We calculate the kernels explicitly, up to an error term that can be contr...
متن کاملRemarks on Global Irregularity in the ∂̄–Neumann Problem
The Bergman projection on a general bounded, smooth pseudoconvex domain in two complex variables need not be globally regular, that is, need not preserve the class of all functions that are smooth up to the boundary. In this article the construction of the worm domains is reviewed, with emphasis on those features relevant to their role as counterexamples to global regularity. Prior results, and...
متن کاملGlobal C∞ Irregularity of the ∂̄–neumann Problem for Worm Domains
where ρ is a defining function for Ω, = ∂̄∂̄∗ + ∂̄∗∂̄, u, f are (0, 1) forms, and denotes the interior product of forms. Under the stated hypotheses on Ω, this problem is uniquely solvable for every f ∈ L(Ω). The Neumann operator N , mapping f to the solution u, is continuous on L(Ω). The Bergman projection B is the orthogonal projection of L(Ω) onto the closed subspace of L holomorphic functions o...
متن کامل